Sub Code: NCE701

Printed	Page	1	of 2	
---------	------	---	------	--

Paper Id:

Roll No:

B.TECH (SEM VII) THEORY EXAMINATION 2019-20 DESIGN OF STEEL STRUCTURE

Time: 3 Hours

Total Marks: 100

 $2 \times 1 = 20$

NoteAttempltSectiohfsequiareymissidgtathenhoosetitably. IS800:2000r7igineaolpysallowed

S E C T I ON

1. Attempkhuestionbsrief.

a.	Discuss stress strain behavior of mild steel?
b.	What is the return period used in the wind code?
c.	Define expansion joint.
d.	Why butt joint is superior to lap joint?
e.	What do you mean by strut?
f.	Define lug angle.
g.	Why any rolled I-section widely used as a beam member?
h.	What do you meant by web buckling?
i.	What is the purpose of anchor bolts in a base plate?
j.	What are the load combinations that are usually considered for truss analysis?

SECTION B

2. Attempt any *three* of the following:

a. Two plates 10 mm and 18 mm thick are to be joined by double cover butt joint. Design the joint for the following data : Factored design load = 750 kN Bolt = M 20, 4.6 grade Cover plates = 8 mm thick each. b. What is the importance of wind load? How it is being calculated for design? c. Select a suitable angle section to carry a factored tensile force of 290 kN. Assuming a single row of M 24 bolts and design strength f_y = 250 N/mm² d. Design a double angle discontinuous strut to carry a load of 250 kN. The length of the strut between c/c of intersections is 3.85 m. e. State the difference between purlin and grit. Describe the design of purlin with their load combinations.

SECTION C

3. Attempt any *one* part of the following:

a. Distinguish between the working stress method, ultimate strength design and limit state design.
b. An industrial building of 15 m height is being built at Ajmer near a hillock. The height of the hill is 160 m and the slope is 1 in 4. The building is proposed on the slope at a horizontal distance of 140 m from the base of the hill. Find the design wind pressure.

Download all NOTES and PAPERS at StudentSuvidha.com

10x3=30

10x1 = 10

Printed	Page 2 of 2								S	ub (Code	2: N	CE7	701
Paper 1	ld: 100701	Roll No:												
4.	Attempt any one par	rt of the following:								1	0x1	=10)	
a.	Two plates 10 mm	n and 14 mm thick	are to	be	joi	nted	by	do	uble	co	ver	but	tt jo	oint.
	Assuming cover pla	tes of 8 mm thickness	, desig	n th	ie jo	int t	o tra	ansr	nit f	acto	ored	load	d	
	of 300 kN. Assume	Fe 410 plate and 16 m	ım diaı	mete	er gi	rade	4.6	bol	t.					
b.	A tie member consis	sts of two ISMC 250 (a) 298.	22N	√m.	The	e ch	anne	els a	re d	conr	nect	ed	
	on either side of a 12	2 mm thick gusset pla	te . De	sign	n the	we	ldec	l joi	nt to	o dev	velo	p th	le	
	full strength of the t	ie. However the overla	ap is to	be	lim	ited	to 4	-00n	nm.'	Гhe	cha	nne	1	

Attempt any one part of the following: 5.

section is to be welded at site.

a.	Design a base plate for an ISHB 350 column to carry a factored load of 1200 kN.
	Assuming Fe 410 grade of steel and M 25 concrete.
b.	Explain with the neat sketch and nomenclature the different types of roof trusses and
	various load combinations. What are the requirements that are considered while
	fixing the upper chord slope of trusses.

6. Attempt any one part of the following:

a.	Calculate the maximum value of a mid-span concentrated load 'W' that can be safely				
	applied on a laterally unsupported beam of length 3m. The beam is simply supported				
	at either end and is free to rotate in plane but restrained torsionally at their ends. The				
	beam section is ISMB 250 and the load is applied at the top flange at mid span, Fy of				
	steel is 250 MPa.				
b.	Design a suitable angle section to carry tensile force of 250 kN. Use welded				
	connection.				

Attempt any one part of the following: 7.

a.	Design the purline of a truss. It is given that the length of the purlin is 5 m. The dead load, live load and wind load are 301.7 N/m, 620 N/m and ,18373 N/m respectively.
b.	Design a but up tension member to carry a factored force of 340 kN. Use 20 mm diameter black bolts and gusset plate of 8 mm thick.

10x1=10

10x1=10

Sub Code: NCE701

10x1 = 10